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Based on Corrsin's hypothesis of independent averaging of the liquid particle trajectories and of the 
Euler correlations of velocity fluctuations we have analyzed the turbulent dissipation of an inertial 
particle impurity with regard to the averaged sliding of discrete and continuous phases. 

The turbulent diffusion of a discrete impurity of inertial particles is encountered in numerous engineering applica- 
tions, for example, in processes of chemical technology and energetics, and is also realized in natural phenomena such as 
atmospheric pollution as well as transfer of suspensions and microorganisms by sea flows. Owing to particle inertia and to 
the effect of mass forces caused by gravitational and electromagnetic fields, the rate of particle dissipation differs essential- 
ly from the rate of turbulent diffusion of a passive impurity. Predicting the turbulent diffusion of an inertialess impurity 
requires information on the Lagrange characteristics of the velocity fluctuations of isolated liquid particles. At present, the 
Lagrange autocorrelation function of velocity fluctuations is found by processing experimental data on dissipation of a 
passive impurity in a turbulent flow [2, 3] or through direct stochastic modeling of the velocity of liquid particles in a 
specified random field of Euler fluctuations related to the selected spatial point [4-6]. In practice, measurement of the Euler 

characteristics of a random field is realized much more easily than determination of the Lagrange correlations for tagged 
liquid particles. In this case, it is necessary to establish the relationship between the Lagrange and Euler fluctuation scales. 
We point out that there are two types of Euler correlations: first, that in the fixed (laboratory) coordinate system. Spatial 
and temporal scales of the fluctuations are related to one another based on Taylor's hypothesis of "frozen turbulence," 

which holds that the fluctuation characteristics of the random field have not changed appreciably over the time of displace- 
ment of the turbulent flow with an averaged velocity for a distance of the order of spatial macroscale. Through a point 
isolated in the laboratory system liquid particles continually pass, whose velocities are correlated much less than the 
velocity of an individual liquid particle on its own trajectory. Consequently, the Lagrange temporal scale of velocity 
fluctuations is larger than the Eulerian, referred to a fixed coordinate system [7]. In the second case, when the Euler 
correlations are determined in a coordinate system moving with the averaged flow velocity, the relationship between the 
values of the Lagrange and Euler temporal velocity fluctuations is not as evident as in the previous situation. We note 

Kraichnan's remark [8] that the approximation of "frozen turbulence" corresponds to an infinite Euler temporal scale found 
in the coordinate system with origin fixed at the carrier flow, whereas the Lagrange scale of fluctuations of the liquid 
particles is finite. Presently it is maintained in the literature that the Euler temporal macroscale related to the averaged flow 
velocity exceeds the Lagrange scale of turbulent velocity fluctuations [3-6, 9-12]. Physically, this circumstance is argued 
in the following way. The isolated liquid particle moves by the action of a great number of overlapping random structures 
forming the Euler fluctuation field. As a result of summing the assemblage of random effects on the liquid particle, its 
displacement may be modeled by a random process, statistically independent of the Euler field and having a Gaussian 
distribution. This hypothesis was advanced by Corrsin [1] and is often used for analyzing the turbulent diffusion of a scalar 
impurity and for establishing a correspondence between the Lagrange and Euler correlations [4, 9-13]. It should be noted 
that the Euler field of velocity fluctuations is characterized by spatial and temporal macroscales, with the ratio of the 
spatial scale to the product of the temporal scale and the characteristic fluctuating velocity governed by the flow type rather 
than being a universal constant [11, 12], which determines the dependence of the relationship between the Lagrange and 

Euler temporal macroscales on the way in which the turbulent flow is realized. 
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The intensity of the turbulent motion of particles is largely dependent on the relation between the Euler and 
Lagrange temporal macroscales. The random trajectories of finely dispersed particles are close to those of the liquid 
particles, and the fluctuation characteristics of the impurity are specified by the Lagrange scales. For larger particles whose 
dynamic relaxation time exceeds the Lagrange temporal scale, the fluctuation intensity is determined by the Euler scales 
[14]. In the averaged sliding of the phases, there is a constant renewal of liquid moles on the particle trajectory, causing a 
decrease in the characteristic decay time of the correlation of the gas velocity fluctuations on the trajectory in comparison 
with the correlations of the gas proper [15, 16]. The effect of "intersection of trajectories" on the intensity of turbulent 
dissipation of the impurity was studied experimentally in [17, 18]. A theoretical interpretation of this phenomenon invokes 
Corrsin's hypothesis [1] of independent averaging for the trajectories of discrete particles and the Euler correlations of the 
velocity field of a liquid phase [19-22]. 

The current study has calculated, using a unified approach, both the relationships between the Lagrange and Euler 
correlations for velocity fluctuations of the carrier phase and the effect of the particle inertia and of the averaged sliding 
velocity of the phases on turbulent dissipation of the dispersed impurity. Calculated results are compared with experimental 

data [17, 18]. 
1. We consider the Lagrange correlation for velocity fluctuations of the liquid phase 

~u/~(t)u/:(tO) = .: u~(R'/(t), t)u:(R:(tO, t,)> = f d x f d x , ~ u i ( x ,  t)u~(x~, t ) 6 (x . - -R / ( t ) )6 (x t - -R / ( t , ) )~  (1) 

In Eq. (8), we convert to coordinate system moving together with the flow 
t 

x' = x - -  Ut, x~ --- x~ - -  Uq, R/(t) = Ut + j  dsu: (s). 
O 

We define the Euler correlation for velocity fluctuations of the gas in a coordinate system with origin fixed at the averaged 

flow: 

( u ~ ( x ' + U t ,  t) u j ( x i + U 6 ,  t 0 )  = (R~(X,  Y, s, t o ) ) ,  

X = ( x i + x ' ) / 2 ,  Y = x ' - - x ~ ,  s = t - - q ,  t ~  

As a result, we write an expression for the Lagrange correlation of velocity fluctuations of the liquid particles 

2 o 6 t, 
(2) 

Let L and T denote the characteristic spatial scales of variation of the function REij with respect to the relative 

variables Y and s. When the inequalities 

Ld In Re (X, Y, s, t~ << 1, TO In R e (X, Y, s, to)/at ~ << 1 

are fulfilled the variation in the function REij With respect to the variables X and t o in expression (2) may be neglected. 
Expression (8) takes the form 

< uj ,( t )uj j ( t  + s) > = < u,u~ > R~(s) = f d Y  < Re(Y, s)Gl(Y, s) >, (3) 
$ 

G/(Y," s)= 6 (Y--.f ds'u/(s')). (4) 
0 

Here, Gf(Y, s) is the probability density of displacement of the liquid particle by the distance Y over the time s. Going to 
the Fourier representation of the function REij with respect to the variable Y, we write 

$ 

:.,,,,,j - = dk(.  (k. s)exp ( - - ,ko  3 ds . ,o  <s ) ) / ,  (5) 
0 
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where eE~j(k, s) is the Fourier transform of the correlation function RE~(Y, s) with respect to the variable Y. Using 
Corrsin's hypothesis [1] under the assumption that the character of the velocity fluctuations of the liquid particles is 
Gaussian, we obtain expression (5) in the form 

u,u, ~ RL(s) f d k  < q)~ (k, s) "> exp " 1 - 1  = k,,k.,Y,~n2 ], (6) 
2 , 

where y z  is the square of the displacement of the liquid particles: 

$ 
2 V.m-- /. u.um ~. 2 i' ds' (s - -  s') RZ~m (s'). (7) 

'o 

From the expression for the Lagrange autocorrelation function for velocity fluctuations of the liquid particles RL~j 
we find the characteristic temporal Lagrange scale of velocity fluctuations 

= dsR .... (s). (8) 
0 

To simplify computations, we compute the square of the displacement of the liquid particles over the Lagrange scale time 
(s = TL~ in Eq. (7)). Moreover, in Eq. (7) we approximate the function RLm in the form RL~ = k(TL,m - s) (a(x) is the 

Heaviside step function). As a result we arrive at 

rL~ = < u . . ~  ' / ( r~)~ .  (9) 

Equations (6)-(9) permit us to obtain in closed form the relationship between the Lagrange and Euler characteristics 
of the flow as a function of the type of Euler field of the gas velocity fluctuations in a coordinate system with origin fixed 

at the flow. 
The expression for the correlation of velocity fluctuations of the liquid particles in the laboratory coordinate system 

follows from Eqs. (3), (4), and (6): 

( u i u , ) R ~ ( s ) = f d Y N R ~ i / e ( y ,  s) 6 (Y- -Us- - . ids 'u f ( s ' ) ) )=~dk( (D~- (k ,  s ) )exp( - - ik ,~U.s - -  ~2 knk.,Y~.,]. (10) 
0 I 

The temporal scale of velocity fluctuations in the laboratory reference system is 

T~ = i dsR~ (s). (11) 
0 

As an example of utilizing the relations obtained we consider the case of homogeneous turbulence. In this situation, 
we approximate the spectral function of fluctuations in the moving reference system in the form [12, 22] 

< qlg-(k, s) ) = 16(2a)-3/ZkTSk2(6ij--kik;/k2) ( u l u j )  • exp[--2(k/ko)2--~ ka = kJei" 

where the integral spatial and temporal scales are equal, respectively, to 

(12) 

L = (2:~)1/2/ko, T = (rtl2) t 2/tOo. 

Having substituted expression (12) into Eqs. (6)-(11) we find a relation between the temporal scales of velocity 

fluctuations of the liquid phase: 

v , -  uT (13) 
L 

E = u/U, (14) 

TL/T [5 (I -g rt/2?zf32) -3 ;~ 

TZ/TV= (1 + y2[~2/~2)1,.2, 
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Fig. 1. Influence of the level of turbulent velocity fluctuations on the ratio of temporal 
scales measured in the laboratory coordinate system (a), and dependence of the ratio be- 
tween the Lagrange and Euler temporal scales (b) on the level of turbulent fluctuations; 
dots denote experimental data, 1-5) [2], 6) [3]: 1} wake behind cylinder; 2) mixing zone 
of jet; 3) ground layer; 4} tube; 5) je t  core; 6) turbulence behind lattice. T ' /T.  10 -~. 

where u = (uiui) 1/2, and ~ is the level of turbulent fluctuations of the gas velocity. The temporal scale in the laboratory 
system T u is found for fluctuations of the velocity parallel to the averaged flow velocity. Relations (13) and (14) show that, 

from measurement data for the temporal scales in the laboratory system, we can establish the relationship between the 
Euler and Lagrange temporal scales in a coordinate system moving together with the flow. Here, the value of the parame- 
ter 3' depends on the type of turbulent flow [12]. 

Figure 1 gives calculated results for the ratio between the Lagrange and Euler temporal scales (in a coordinate 
system with origin fixed at the flow) based on the data of laboratory measurements [2]. The figure also presents calculated 
results for the ratio of the temporal scales in the laboratory coordinate system based on experimental values of the ratio 
between the Lagrange and Euler scales in a coordinate system of the flow [3]. It is evident that, as distinct from the results 
of [2, 14], the ratio TL/T is smaller than unity for all types of turbulent flows presented. 

2. The Lagrange correlation of velocity fluctuations of a particle is of the form 

( v v , ( t ) v p j ( t l ) ) =  (u ,u j~  i. dt, ex p • dt lexp ~ Q,j(t', t[). (15) 
T ~ T 0 T . 

The function Qij is the correlation of velocity fluctuations of the liquid phase computed on the particle trajectory: 

( uiu j ) Qij (t, tl) = f dx  f dx x ( u i (x, t) uj (x 1, tl) • • 6 (x - -  Rv (t)) 6 (xl - -  Rp (t0))  �9 

Converting to a coordinate system moving with the carrier flow and restricting ourselves to the case of homogeneous and 

statistically stationary turbulence, we write an expression for the correlation of velocity fluctuations of the gas on the 
trajectory of a dispersed particle 

( u~uj > Q~j (s) = f dY ( R.e,i (Y, s) G v (Y, s) > . (16) 

The function (Gp(Y, s)) represents the probability density of displacement of a discrete particle by the distance Y 
over the time s. In accordance with the results of [23], the probability density for the particle displacement in the space 
(Cp(Y, s)) is connected with a more general probability density for the displacement (Cp(Y, s; v)) that describes the particle 
displacement by the distance Y over the time s on the condition that the particle velocity at the initial instant of time is v. 
The function (Gp(Y, s, v)) accounts for the inertia of the dispersed impurity and is written as 
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{ I ( i s l  ( ' (Gp(Y, s; v)~ = ,/8 V - - W s - - v x  l - - exp  s _ _ )  ---'i 'ds' 1--ex~ --s-~-' ]i u (Rp(s'), s ' ] ! \ i  
" ! ~: ' b ,- " T J " J /  (17) 

Taking into account the Gaussian character of velocity fluctuations of the particles and the relation between the 
probability densities of displacement 

( ap (v, s) ) = J" dv% (v) ( ap (V, s; v) ) ,  

we write an expression for the correlation of velocity fluctuations of the gas on the particle trajectory 

( u~u~ ) Q~j (s) -- j" dk ( Og. (k, s) ) e x p  - -  ik,,W,~s . - -  - ~  k,~k,~A.~, ,_ 

where A2~., is the square of the displacement of a discrete particle: 

A ~ =  ( V , , V m ) X  ~ 1 - - e x p  - -  q-g,~, 

g ~  = ( u,~u,, > 2 [ds" ( s -  s') Qnm (s') - -  x .[ ds" I --exp 
o 

s - s ' ) ]  • 

(19) 

(20) 

The temporal macroscale of turbulent fluctuations of the gas velocity on the particle trajectory is 

O,,n = J dsQ,~ (s). (21) 
0 

We compute the square of the displacement of a discrete particle in Eq. (18) at s = O,~, prescribing the correlation 
Qm = A(0~m -- S). AS a result, for the quantity A2,m we find 

AZnm (v,~v,, T2 [ l - - exp  ( 0~" ) j 2 { [ = +<u~u,.> 02., ** 2,0~"~ 
�9 T T 

(22) 
•  O " ~ ) ' ) - - ( 3 + e x p (  " x  , O~- '~))(l--exp(x O,,,~))]}.x 

For low-inertia particles (r --, 0), as is seen from Eq. (22), A2,m = YZnm. The square of the particle displacement 
for the inertial impurity r > > T decreases: AZr= - (UnUm}T/o-T 2. 

Expressions (15), (18)-(22) enable us to determine in closed form the characteristics of the dispersed phase from 
the autocorrelation function of velocity fluctuations of a continuous medium, specified in the coordinate system of the flow. 

3. To compare the calculated results for turbulent diffusion of particles subjected to mass forces with experimental 
data [17, 18], we calculate the fluctuation characteristics of the particles for the case of homogeneous isotropic turbulence 
generated behind the lattice in a wind channel. The correlation function of velocity fluctuations of the gas is given in the 
form (12). The velocity vector of phase sliding is W, = ~I.W. 

The correlations of velocity fluctuations of the gas on the particle trajectory in directions parallel and perpendicular 
to the sliding velocity of the phases are of the form 

Qn(s) = ~]-l~74exp ~176 1 + 7 7 - 2  , 
2 4oMzl 

' (23) 
Qm (s) Qn (s) t q- ~t2--~2 I , tti = 1 -}- huko/4.  

2 ~ 4~t~ 

It follows from Eqs. (23) that a rise in the sliding velocity of the phases causes an intense decay of the correlations for 
velocity fluctuations of the gas on the particle trajectory. 
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Fig. 2. Variation in the turbulent energy of particles (dp = 57/Jm) along the length of a 
wind channel at various sliding velocities of the phases (dots show experimental data 
[18], dash line shows fluctuating energy of a carrying gas, and solid lines show intensity 
of velocity fluctuations of particles) (a) and variation in the square of the turbulent dis- 
placement of particles (dp = 57 k'm) along the length of a wind channel (dots show 
experimental data [18] and curves calculation) (b): 1) W = O; 2) 13.5 cm/sec; 3) 25.8; 
4) 39.7; 5) 54.5; 6) 81.5; 7) 1.08; 8) 121.6. y, cm. 
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Fig. 3. Variation in the square of the turbulent displacement of particles (dp = 57/Jm) 
along the length of a wind channel (dots show experimental data [18], and curves calcu- 
lation): 1) W = O, 2) 2.73 cm/sec, 3) 5.84, 4) 13.31, 5) 17.06, 6) 20.91, 7) 23.65. 

Fig. 4. Effect of the rate of gravitational deposition of particles on the intensity o f  turbu- 
lent dissipation of impurity (dots show experimental data [17], and curves calculation): 
1) r = 1 .7 .10 -3sec ,  2) 2 0 . 1 0  -3, 3) 4 5 - 1 0  -3 , 4) 4 9 . 1 0  -3 . t, sec. 

The temporal macroscales of velocity fluctuations of the gas on the trajectory and the turbulent diffusion coeffi- 

cients are 

011 = TlaTlp~2 "4 (I -~- W~Tn/L~) - ' / ~ ,  
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Fig. 5. Turbulent diffusion coefficient of particles vs sliding velocity of phases (dots show experimental 
data [18], 1 and 3, dp = 5 pm; 2 and 4, 57 pm; 1 and 2 are obtained from measurements of impurity 
dissipation; 3 and 4 from experimental values of the correlations for velocity fluctuations of particles in 
the laboratory reference system; curves show calculated results. DP~I, cm2/sec; W, em/sec. 

Fig. 6. Integral temporal scale of velocity fluctuations of particles TUp, msec, in the laboratory system vs 
sliding velocity (dots show experimental data [18], and curves calculation): 1) dp = 5 pm,  2) 57. 

The intensity of pulsatory motion of the  
the equation 

)articles in the direction of the averaged sliding velocity is calculated from 

< v] > = ~ u2 ) (1 I~'2T~ 1-1/2 + exp (~,) erfc (A), 

~ T  2 ~--1/2 A = - T  [ 1 - k ~  

The integral scales 1% and co0(L, T) in Eq. (12) are determined from experimental values of the decay time for the auto- 
correlation function of velocity fluctuations of the gas in the laboratory coordinate system T u from Eqs. (13) and (14). The 
value of B = TL/T is chosen from experimental data [3], depending on the turbulence level (. 

The temporal macroscales for the Lagrange correlation of velocity fluctuations of the particles TLp and for the 
correlation of velocity fluctuations of the impurity in the laboratory reference system are predicted as 

L U L rp = < v~ ) ID~,  Tp = Tp (1 -t- 7~2/~2) -I/2. 

Figure 2 illustrates the effect of the sliding velocity of the phases on the variation in the fluctuation energy of the 
dispersed impurity (alp = 57 ~m) and on the intensity of turbulent dissipation of the impurity in flow behind a turbulizing 
lattice. The averaged sliding was caused by the electric field acting on the impurity particles and directed normal to the 
flow velocity [18]. Clearly, with increasing velocity of sliding, an intense degeneracy of turbulence of the dispersed phase 
is observed. Due to the effect of "intersection of trajectories" the turbulent diffusion coefficient for the particles decreases, 
thus reducing the diffusional dissipation of the impurity in the field of mass forces. It should be noted that, for small 
particles (dp = 5 gm [18]), the effect of the relative velocity of the particles on the degree of turbulence degeneracy for the 
particles is insignificant. However, a rise in the sliding velocity results in a decrease in the turbulent dissipation for the 
low-inertia impurity as well (Fig. 3). 

Figure 4 presents simultaneous effects of the particle inertia and of the rate of gravitational deposition, directed 
along the averaged flow, on the turbulent mixing of the particles in the wind channel in relation to the time. 

Figure 5 shows a comparison of calculated results for the turbulent diffusion coefficient of the particles to experi- 
mental data [18]. Evidently, for large particles with intensity of pulsatory motion determined by the Euler temporal 
macroscale, the turbulent diffusion coefficient is somewhat larger than for small particles. This conclusion is consistent 
with the results of [5, 14, 19, 22]. As the sliding velocity rises, the influence of inertia on the turbulent diffusion coeffi- 
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cient diminishes. Figure 6 depicts the influence of the sliding velocity of the phases on the characteristic temporal scale of 
velocity fluctuations of the impurity in the laboratory reference system. It also follows from the figure that, with increasing 
inertia of the particles, one can anticipate a growth of the temporal scales of velocity fluctuations for large particles as 
compared with a fine impurity. 

NOTATION 

ui(x, t), velocity fluctuation of the gas; ~(t), Lagrange velocity of the liquid particle; Rn,(t), coordinate of the liquid 
particle; U, averaged flow velocity; Reij(s), Lagrange correlation of velocity fluctuations of the liquid particles; (REij), Euler 
correlation of velocity fluctuations of the gas in a coordinate system with origin fixed at the flow; 6(x), Dirac delta 
function; ,pp(v), probability density of the particle distribution in velocities; 6ij, Kronecker symbol; DPii, turbulent diffusion 
coefficient of the particles; x, coordinate along the flow axis; M, mesh size of the turbulizing lattice; dr, diameter of the 
impurity particles; r, time of dynamic relaxation of the particles; erfc(x) = 1 - erf(x); 

erf(x) = 2/v~ ~f dt exp(-t2), 
0 

probability integral; y2, square of the particle displacement in the wind channel; W, relative velocity of the phases. 

. 

2. 
3. 
4. 

. 

6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 
14. 

15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 

LITERATURE CITED 

S. Corrsin, Adv. Geophys., 6, 161-162 (1959). 
S. Yu. Krashenirmikov and A. N. Sekundov, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 1, 74-82 (1970). 
Y. Sato and K. Yanamoto, J. Fluid Mech., 175, 183-199 (1987). 
J. P. Lynov, A. H. Nielsen, H. L. Pecsell, and J. J. Rasmussen, J. Fluid Mech., 224, 485-505 (1991). 
K. D. Squires and J. K. Eaton, J. Fluid Mech., 226, 1-35 (1991). 
P. K. Yeung and S. B. Pope, J. Fluid Mech., 207, 531-541 (1989). 
J. L. Lumley and H. A. Panofsky, The Structure of Atmospheric Turbulence, Interscience, N.Y. (1964). 
R. H. Kraichnan, Phys. Fluids, 7, 142-148 (1964). 
P. G. Saffman, Appl. Sci. Res., Al l ,  245-255 (1963). 
J. R. Philip, Phys. Fluids, 10, 69-71 (1963). 
R. Phythian, J. Fluid Mech., 67, 145-153 (1975). 
J. F. Middleton, J. Marine Res., 43, 37-55 (1985). 
T. S. Lundgren, Phys. Fluids, 19, 355-358 (1976). 
A. A. Shreiber, L. B. Gavin, V. A. Naumov, and V. P. Yatsenko, Turbulent Flows of a Gas Suspension [in 

Russian], Kiev (1987). 
G. T. Csanady, J. Atmos. Sci., 21,222-225 (1964). 
M. I. Yudin, Atmospheric Diffusion and Air Pollution [in Russian], Moscow (1962), pp. 210-217. 
W. H. Snyder and J. L. Lumley, J. Fluid Mech., 48, 41-47 (1971). 
M. R. Wells and D. E. Stock, J. Fluid Mech., 13ti, 31-62 (1983). 
M. W. Reeks, J. Fluid Mech., 97, 569-590 (1980). 
L. M. Pismen and A. Nir, J. Fluid Mech., 84, 193-206 (1978). 
A. Nir and L. M. Pismen, J. Fluid Mech., 94, 369-381 (1979). 
R. Mei, R. J. Adrian, and T. J. Hanratty, J. Fluid Mech., 225, 481-495 (1991). 
I. V. Derevich and V. M. Eroshenko, Inzh.-Fiz. Zh., 59, No. 3,454-466 (1990). 

114 


